

Quickstart

 Simply define a new class that derives from IUnifiedContainer<T> (where T is your interface) and decorate it

with the [System.Serializable] attribute.

using System;

public interface IEngine { /*...*/ }

public interface IAlarm { /*...*/ }

[Serializable]

public class IEngineContainer : IUnifiedContainer <IEngine> { }

[Serializable]
public class IAlarmContainer : IUnifiedContainer<IAlarm> { }

Any exposed field in your MonoBehaviour script that’s of your derived type will automatically render in the editor

using its custom property drawer.

using UnityEngine;

public class MyScript : MonoBehaviour
{
 public IEngineContainer Engine;

 public IAlarmContainer Alarm;
}

And that’s it!

Abstracting Container

 You can reference the interface from within code by accessing the container’s Result property, or create a

wrapping property around that and make the container private to pretty much forget about it altogether.

using UnityEngine;

public class MyScript : MonoBehaviour
{
 public IMyInterface Interface
 {
 get { return _interface.Result; }
 set { _interface.Result = value; }
 }

 [SerializeField]

 private IMyInterfaceContainer _interface;
}

Now the rest of your code doesn’t need to know about the container type, it just deals with your interface directly:

using UnityEngine;

public class MyOtherScript : MonoBehaviour
{
 public MyScript MyScript;

 public void Example()
 {
 IMyInterface item = MyScript.Interface;
 item.InterfaceMethod();
 MyScript.Interface = new MyImplementation();
 }
}

If you go this route, make sure you decorate the private field with the [SerializeField] attribute or else it will not be

exposed to the editor and Unity will not remember it when serializing/deserializing.

Abstracting Container Collection

You can similarly abstract a List of container derived types behind an IList<TInterface> by using the included

IUnifiedContainers object, which is constructed given a delegate that returns the backing List<TContainer> field of the
class. To implement a setter, use the included ToContainerList extension method as shown.

using UnityEngine;
using System.Collections.Generic;
using Assets.IUnified;

public class MyScript : MonoBehaviour
{
 public IList<IMyInterface> Interfaces
 {
 get
 {
 if(_interfacesDelegate == null)
 {

 _interfacesDelegate = new IUnifiedContainers<IMyInterfaceContainer, IMyInterface>
 (() => _interfaces);

 }
 return _interfacesDelegate;
 }
 set
 {

 _interfaces = value.ToContainerList<IMyInterfaceContainer, IMyInterface>();

 }
 }
 private IList<IMyInterface> _interfacesDelegate;

 [SerializeField]

 private List<IMyInterfaceContainer> _interfaces;
}

This will allow you to reference your interfaces directly without having to access the Result property like so:

using UnityEngine;

public class MyOtherScript : MonoBehaviour
{
 public MyScript MyScript;

 public void Example()
 {
 foreach(var item in MyScript.Interfaces)
 {
 item.InterfaceMethod();
 }

 IMyInterface indexedItem = MyScript.Interfaces[0];
 MyScript.Interfaces[1] = new MyImplementation();
 MyScript.Interfaces = new[]
 {
 new MyImplementation(),
 new MyImplementation()
 };
 }
}

UI
Property Drawer

1. Field Name
2. Value – Displays the reference that is currently implementing the interface in GameObject (Component) format

if it is being implemented by a component; otherwise will display the type of the object that is currently
implementing the interface or null if nothing is.

You can drag and drop Components or GameObjects here to set it to a value. If it is currently being
implemented by a Component then you can click on it to ping the parent GameObject in the editor.

3. Click to set the value to null.
4. Click to open a list of all GameObjects and Components that implement the interface.

Selection List

1. Expand all hierarchies below.
2. Collapse all hierarchies below.
3. Set value to null.
4. The GameObject with Components or children with Components that implement the interface. Click the foldout

icon the expand/collapse the hierarchy and the name of the object to ping it in the editor.
5. The Component that implements the interface, click to select.

Automatic Property Drawer

 Included is a special component that will automatically register the IUnifiedContainerPropertyDrawer to draw

all properties that derive from IUnifiedContainer<T> without the necessity of a unique property drawer or editor each
time you define a new type. This is made possible by using Reflection to register the property drawer for each derived
type every time Unity serializes/deserializes - as such this approach is vulnerable to changes in Unity’s internal workings
in the future.

 If this mechanic ever stops functioning then you must decorate each field that’s of a type that derives from

IUnifiedContainer <T> with the [IUnifiedContainer] attribute in order for it to be integrated with the editor.

 You can also switch this mechanic on or off by selecting the option from the Edit > IUnified > Property Drawer

Auto-Registration menu item, or permanently disable the mechanic by simply deleting the AutoDrawerRegistration
folder altogether.

Well, that’s about it! If you have any questions you can reach me at woundedwolfgames@gmail.com and I’ll get
back to you as soon as I can.

Thank you for your support!

Roman Habib Issa

mailto:woundedwolfgames@gmail.com

